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Summary

Analysis of the complete vibrational spectra of a series of X;MCo(CO),
molecules (M = Si, Ge, Sn; X = H, D, F, Cl, Br, I) has permitied valence force
field calculations. The bonding forces can be interpreted in terms of a bonding
scheme in which the metal—ligand backbonding proves to be the most important
contributor. The metal—metal stretching force constant decreases in the series
F>C>RBe=~H D>1for 2 particular metal, For 2 specific ligand X the sequen-
ceis Ge > Si> Sn.

‘Introduction

In the last few years the growing interest in the nature of the metal—metal
bond, especially between transition metals and Main Group IV e€lements has re-
sulted in a number of papers being published [1]. Most of these articles have
dealt with the vibrational spectra in the carbonyl stretching region and with
force field calculations according to the Cotton—Kraihanzel method [2-5]. From
these force fields, attempts were made to relate the changes in the carbonyl
stretching force constants to bonding aspects in the metal—metal bond.

Fairly complete valence force field calculations for members of the series
of X3;MCo(CQO)s molecules have only been performed by Watters [6, 7] and
Cyvin [8], although they used oversimplified structures with the equatorial car-
bonyl groups perpendicular to the molecular axis. More serious objections can
‘be made against the method used by Watters; even in his two papers dealing
with the same molecules, several numerical discrepancies can be observed and,
moreover, no justification was given for the constraints in his force fields of the
seven molecules. Furthermore, the calculations were based upon incorrect and
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incomplete vibrational assignments, as we have shown in two recent papers [1, 9]
Cyvin’s paper also omits any description and justification of his calculation
method and of the choice of the necessary constraints, and thus no significance
can be attached to his force field data. Because the geometries of several mole-
cules are now known, and as the complete series of molecules can now be treat- -
ed as a whole, we have been able to calculate a reliable valence force field and to -
interprete the bonding forces in terms of the type of bonding. o

Structures

Structural investigations have been performed for only a few members of
the series of X;MCo(CO); molecules, viz. an electron diffraction study of
H;3S5iCo(CO); {10] and X-ray analysis of Cl3SiCo(CQO), [11] and F3SiCo(CO)4
[12], all showing a €, symmetry for the unimolecular species. This is confirmed
by our determination of the crystal structure of Cl3GeCo(CO); [13]. There are
only trivial differences between the structures of these complexes, except for a
difference in the Si—Co distance of the hydride of 0.15 A.

Since the vibrational spectra of all members of the series are very closely
related, the same kind of structure is assumed throughout the whole series, and
equivalent structural data for the —Co(CO). parts of the molecules. The differ-
ences found in the metal—metal distances have been ignored, because the final
force field parameters prove to be unaffected by these changes. Therefore, we
have used the same values as Watters [6]. For the M—X distances we have chosen
the mean values obtained for various MX, and MX,Z compounds. Al angles and
distances are given in Table 1.

Coordinates

The C,, symmetry of the unimolecular species gives rise to nine A ,-type
and eleven E-type vibrations, all active in the infrared as well as in the Raman.

TABLE 1

MOLECULAR DATA FOR THE X3MCo(C0)s MOLECULES

Bond lengths r(d) Angles

Co—Ceq 1.76 Cax—Co—Ceq 95°
Co—Cax 1.80 Ceq—Co—Ceq 119°15’
C—0¢q 1.15 Co—C—0e¢q and ax 180°
C—0,x 1.34 M—Co—Ceq 85°
Si—Co 2.25 X—M—X 105°26°
Ge—Co 2.40 Co—M—X 113°15’
Sn—Co 2.50

Ge—H 1.53

Ge—F 1.67

Ge—Cl1 2.30

Ge—Br 2.20

Ge—t 2.49

si—C1 2.03.

Sn—C1 2.32

Sn—Br 2.44

Sn—T . 2.69
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The two A,-type vibrations are inactive. The set of 36 internal coordinates, as de-
fined in Fig. 1, is not linearly independent and contains three redundant coordi-
nates (3n — 6 = 33). The complete set of symmetry coordinates, listed in Table

2 together with the redundants, forms an orthonormal set and transforms accord-
ing to the characters of the pointgroup C;,, in contrast to the treatment of ear-
lier publications [6, 7].

The inverse kinetic energy matrix G of the Wilson-FG method

Since the force field parameters and the G-matrix elements are numerically
complementary, an exact definition of the G-matrix is essential. The internal
G-matrix elements are taken from the paper of Decius [14]. The G-matrix in
terms of symmetry coordinates is factorized in a 9 X 9 matrix of A; symmetry,
a 2 X 2 matrix of A, symmetry and two identical 11 X 11 matrices of E symme-
try. The elements of the A and E blocks are tabulated in Tables 3 and 4 respec-
tively.

The force field

Force field calculations were performed by Wilson’s FG-matrix method
[15]. The force constants were calculated without anharmonicity corrections,
and were obtained together with the calculated frequericies by an Algol compu-
ter program, suitable for a CDC 6400 computer. This program requires as input
data the G-matrix elements as well as a ““first-guess’ starting force field.

The general quadratic valence force field of each complex with C;, symme-
try contains 454, + 66E = 111 parameters in terms of symmetry coordinates.

(continued on p. 363)
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Fig. 1. The XgMCo(CO)4 staggered Cj3, type molecule model. All the applied internal coordinates are
indicated, except the torsional coordinate.
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TABLE 2

SYMMETRY COORDINATES

A vibrations:

Sl = Ars

Sz=(Arl°+Ar“+Arl ﬁ/3

S3=(Arq+ Ars + Arg) 3

Sg = Arg

Ss=(Ary + Ary + Ar) V3

Se = Ara

S7=(a71 + A1z + Av3)AN/3

Ss=[a(Afy + Afy + AB3) — (Ad; + Ady + AP3))/ {3(L +a )}z
Sg = c(—AE1—A52—AE3+A64+A55+A66)+I)(A(!1+AC!2+A&3_)

where g = —3 sin ¢ - cos $/sin 8; b =— 3/3 cos € - sin e/sin a; ¢ = /2 sin e/fsin &

E vibrations:

S10a = (2Aryp — Aryy — Ar)NE
S11a = (2Ar; — Arg— Arg)N6
Si2a = (2Ar; — Ar, — Ars))Ne
S13a= (247] — A12— A73)IV6
Siaa = Awy

Sisa = (248 — ABz — AB3)NV6
S16a = (248, — Af, — AB3)V6
S17a = (24¢] — AP — AP3)IVE
S18a = (2A€y — Aes — Ae3)IVE
Sioz = (2Aa; — Aas — Aaz)Ve6
Saga = (2A€a — Aes— Aeg)INV6
Siop = (ary — arpyn2

Syp = (Arg— arg)/V2

S12p = (Arp— Arsd)NV2

S13b = (Av2— Ay3N2

Siap =Awa

S1sp = (62— AF3)/V2

Siep = (482 — AG3)NV2

S17b = (Ad2 — Ad3)IV2

Siap = (Aez — Ae3)NV2

S19b = (Aaz — Aaz)N2

S0p = (A€s — Aeﬁ)/\/Z

Ao vibrations:

Sa;-= (AB; + AB> + AB3)/\/3

S92 = AT

where 7 is the torsional angle between MX3 and Co(CO)3 ¢q

Redundancies:

S =(Bey+ Aex+ Aes+ Acg + Acs + Ace)NE=0

S = 2b\f2(—Ae; — Aeg — A€y + Aeg + Aes + Aeg) + n/2(Aq; + Aag + Aag) =
s = [a(At,‘Jl + Agz + AP3) + (A0 + AG + AG3)]/ {3(1 +a )iz =0 -
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G11=B0+ BC

Gi14=—¥C
G22=Ho tKC
G2 3=—#C
G27=0
G29=0

G3 3= K, +3cosze-pC°
G3.4=+/3pBCo “coOs €

G3 6= —\/35100 ~cos €

G371= 3PCoCeq “HCo -cos€-sine

1+2cosa ' sin €
G3.9=3PCoCe “BCco-cose-sine —+?/e -
q l1+cosa sin &
Gaa=upc + BCo
Ga.6=—HCo
Ga 7= \/SPCOCeq “UCo-sine
R 1+2cosa sin €
G0 = /30C0C,q Hea S | TV LT

Gs.s =puywy +3 cosz¢p.M

Gs 6= \/IK¥M - CO5 @
3+ 5cosé

Gsg =3pMX " MM “Sin@ ~cos¢ |f ———

G6,6 = #M T HCo
G6,7= —V3PCoCeq " HCo TSR E

3+5cosf
Ges=3pMx - #M-sin¢ )/ ————
1+ cos@

1+2cosa sin €
Gg 9 =—\/3‘7C0C241' UCo sIn€ {(——— F i\/ﬁ -

l1+coscx sin

1+cos@

2 2
G777 P CoCeq MO+ (PCOgq + PCoCey? Heot (2 —2¢c0s 0P CoCeq ~ HCo
eq eq eq eq

2 2
Gr9= { 2(1 —cos a)p CoCeq "HCo * (P"CoCeq* PCoCeq * Pcoeq)ﬂc}

3+ 5cos0

2 - 2
Gs.8= P Mxlex + 3 sin’6 - ppp) { —————
1+ cosf

2 2
Go o= {2uco-p CoCeq (1 —COSO + l"p CoCeq}

1+2cosc

a U; is the reciprocal of the mass of atom i and p;;:is the reciprocal of the distance between atomsi and j.

TABLE 4. G-MATRIX ELEMENTS FOR E-SPECIES?

G10,10=KHQ * HC
G10,11 = —HC

G10,13=0
Gic,15=0
G10,13=0
G10,19=0

G111 =BG+ Bpo(l —cos )
Gu1z=—2 PCoCeq *HCo " sin €*cos €
G114 =— 3 \/GPCocu *pcoesine
Gn,15=0

3 .
G11.17 = — 2PjMCo * BCo * SR €

3 - . -
G11,18 = 2 £CoCeg * HCo * 1 efcose— (Pc°cax/Pc°ceq)}

2,
G119 = PCoCeq* Bcofl —cosa) fsin e




362

TABLE 4 (continued)

G120 = —"% Pcoceq' Hop®sin e {cos €+ (pMCoIpCoCeq)}

G212 =Ry + (1 —cos 6)

G {2 16 = Ppx * K1l —cos 6> /sin &

G217 = % By ® Mg = sin @(eos @ — Ppgco /Py

61220 ~—3 Ppyoo * My * SN &

Gi3,13= cho * ko + eco, eq pCoCeq)zl‘C"’ (; + cos @)p” éOEeq *Bgo
G13,1a=2 \/6#(;0 *PCoCyy ¢ PCoCeq ®. cos €

G3, 15—0

G317 = z PCoCeq * PpMCo *HCo T OS5 €

G318 = ‘3“ PCoCeq {PCoCeq ™ PCOHCt G cos?e PCoCeq ~3cose- PCoCaxMCo}
Gizo=Fcosessines peoc,, {(pCoCeq PO, MHe — (1 —€0s Dgoc, " Moo } Ein @
Gy3 20 = PCoCeq {(ﬂcoceq + ncoeq)ﬂc+ (z cos"€* PgoGe, +%‘ cos € 1 PMCo)Co }
Gla14= choax THQ T (PCO,, T PCOCax)z BC+ PZCoCax “BCo

Gis,15=0

Gu11=3 \/GPCoc - PMCo ~ ¥Co

Guas =3V 60GCoC,y 1PCOCay ~ PCoCeq * ©°5 ¥ co * (PCoC,y * PCO, #C}
Gia,19=75 \/6 sin e(cos @ — l)pCoCeq *PCoCay ” Rogfsin

Guz20=3% \/‘59000ax *BgolPMCo * €05 €° PCoCeq’

_ 2 2 32 .
G15,15 = P COgq " HO* PCO.q ¥ PCoCeq? HCTZ P CoCeq * HCo

G517 0

G518 =0

G519 =0

Gi5,20 = 02 2+ cos 8 (1 —cos 6)3

G1616=P MX (BX ———— *Hpq —

1+ cos@
sin 0
G1617=T3sind-cos9 - p Mx X — KM(COS P —~ OMCo/PMX) (1 — cos 8)fcos ¢ } /sin §

Gig20= 3 sin ¢(cos O — 1)pmx * PMCo * HM/sin 9 .
G17,17= PZMX {rx +3eMmlcos 9 — PMColPMX)” +3BCo®PMCo/PMX) 3}

Gi1,18= 2<Pc-;cax PCoCeq - ©°F €)PMCo * FCo

Gi17,19= 5 sin e(eos @ ~1)PCoCeq " PMCo * HColsin &

Gi720=3PMCo {eMmco — PMX - c0s DM + (PMCo + PCoCeq * €05 eco}

Gig,18 = PZCOCeq {#c*’ % BCo (cos € — PCOCax/pCOCeq)2 + %“CmCngm/pCoCeq)z}
Gig19=—2sine-cose- sz:'oceq {BC—8C0(€0S € — BCaC,, /PCoC,y) (1 — cOs W)fcos € }ssina
Gig20=— DZCoCeq {Mc+ %I‘Co (205 € — PCoCyy /PCoCey? (605 € + PMCo/PCoCeqyd }

2+ cosa (1 —cos o:)3
+ E£Co

2
G19,19= P u
* CoCeq }"C\ 1+ cosa .2
- sin” o
G19 20~ § cose-sin€ - p "OCeq {yc— KCo (cos e + PMCO/PCoCeq) (1 —cos a)/cos € } /sin

G20207 =p? CoCeq {I-‘C"’ 3 Heolcos e + pMCo/pCoCeq) +3 "M (0MCo/PCoC,g) }

p, is the recxprocal of the mass of atom i and Pij the reciprocal of the distance between atoms i and j.
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The number of available data is not sufficient to fit all the parameters for each
molecule. Therefore, we have to constrain our force field. This constrained
valence force field was obtained by the following general assumptions:

(1) All bend—bend interaction constants are taken as zero.

(2) All stretch—stretch interactions not directly linked are neglected except
those for the carbonyl stretching system.

(3) All interaction constants between a bending mode and stretching vibra-

tions not involving the apex atom of this bending mode are neglected.

: (4) The signs of the interaction constants are confirmed by Hybnd Orbital
Following arguments.

For the discussion of the restrictions in detail, we divide the molecules into
several parts.

The —Co(CO), part

The force field parameters in the cobalt tetracarbonyl part of the molecules
were fixed as far as possible. This fixing was not successful for the CO stretching
diagonal force constants nor, aithough to a lesser extent, for the CoC stretching
constants. The reason for this will be discussed within the framework of the
bonding scheme. The starting values of the diagonal and the off-diagonal elemenis
in terms of internal coordinates for a “first-guess’” force field, have been taken
from Jones’s calculations for the parent molecules M(CO)g, M(CO)s and M(CO),
[16]. Small corrections were.applied for the changes in the bonding angles of
our molecules with respect to these latter. We chose the off-diagonal elements
following the same arguments as Jones, contrary io the Cotton—Kraihanzel
method [17, 18].

The MX; part

The starting diagonal force constants were taken from general valence force
field calculations on the parent MX,; molecules {19, 201 and other MX3;Z mole-
cules [21, 22] as far as the fmx, fux; and fmx, mx constants are concerned.
Force constants were introduced by combining both the above parts. Among
these are the diagonal force constants fycos fxmco aN4 fracoc-

The fumco starting values are taken from Watters [6, 7). For the interaction
constants fxx. Mco» fMx. Mx; 24 fMco, MX5, We used the assertion of Becher
[24], that in a series of closely related molecules the following relations between
diagonal and off-diagonal elements in terms of symmetry coordinates can be
used: .

Fi; = q;jV Fi; X Fy; (g;; is constant through the whole series).

In order for our first assumption, that all bend—bend interactions are zero,
to hold the following relations must be valid:

Fgs=0.56 Fi6,,6 +0.44 Fy5 1. Fg.9=0.5 Fi5,158 + 0.5 Fy0 2.

For several members of this series of molecules, the assumption can only
be maintainied by introducing a Van der Waals interaction between the MX;
group and the equatorial CO groups. The order of magnitudeé of this interaction
(F's, and F4 90) is determined by the distance between the halogen atoms and
the equatorial carbon atoms. However, it was still necessary to introduce a very
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TABLE 6

RELATIONS BETWEEN SYMMETRY FORCE GONSTANTS AND VALENGE FORGE CONSTANTS

A\ block

F1,1=1co,y

F1,2=31C0,z. COcq

Fia3= \/3fco,x, CoCeq
F1,4=C0O,x. CoCayx
F12=fCOeq + 2fCOcq. COeq
F2,3=C0pq,"CoCeq * 2/COeq. CoC'eq
Faa=+/ 3fCOeq. CoCax
F3.3=fCoCeq * 2/CoCeq, CoCeq
F34=/31 CoCeq. CoCax
Faa=TCoCyy

F4,6 = fCoCyyx, MCo
Fa7=\/3fCoC, 4. CoCOqut
Fs55=Mx + 2IMX, MX
Fs6=/3MMx. MCo

fx, XIMX" + 2Mx, X'TMX) — (fMx, XMCo + 2fMX, X'MCo)

a+ad)

a\/3 \/3
Fe 8 =———== M'McCo, XMX — —7=—5 'MCo, XMCo
Ja +d® Ja+ad

Fa.7=fCoCOgyy ¥ 2fCoCOGyt. CoCOout

Fgg=0.56 fxmx + 0-44 fXMCo
Fgo9 = Van der Waals
Fo,9=0.51c,,CoCeq * 0-3 fMCoCeq

E Block

F10,10 = fCOgq — fCOeq. COeq

F10,11 = 7C0Ceq. COeq ~ [COeq. CoCeq

F11,11 = fCoCeq — fCoCeq. CoCeq

Fi1,14= V6! 3Coc’ o, CoCOmx — V6! 3 CoC” oq, COC0ax
F1212=Mx — fMX, MX

F13,13 = fCoCOgyut — fCoCOGut. CoCOout
Fia,16=fCoCOax

F15,15=fCoCO;n .
Fi6,16 = fxMX

Fi7.17=fxXMcCo

Fi7,20= Vsn der Waals

F18,18 = ICaxCoCeq

F19,19= fcechce.;l

20,20 = fMCaCeq
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TABLE 6a

THE FIXED SYMMETRY FORCE CONSTANTS FOR ALL MOLECULES IN MDYN/A

Fi12= 0.20 : F 7 7=0.62
Fy3=—0.17 Fj0,11 =0.62
Fi1a4= 0.55 F11,14=0.10
Fp3= 0.41 Fy3,13=0.75
F2.4 =—0.17 Fl4‘l4 =0.55
F3.4 = 0.05 FIS,IS =0.35
Fae= O F1s,18 = 0.40
F47=—0.10 Fy9 19 = 0.09

small difference between F; ; and F,; ,3, both standing for the fc,co out of
plane bending constant, which means that an f,co .out. Coco-out IRteraction
constant with a very small negative value had to be introduced. Otherwise the
vibrational assignment would have had to be reversed, contrary to the experi-
mental depolarization ratio obtained. These assumptions lead to a force field of
34 parameters with physical significance. The calculations are then carried out
with the set of symmetry coordinates as basis set. The relations between the
calculated force constants in terms of symmetry coordinates and the internal
valence force constants are given in Table 5. In these relations all the neglected
bend-bend interactions are omitted.

The calculated fixed and non-fixed symmetry force constants are tabulated
in Tables 6a and 6b, respectively. The calculated vibrational frequencies are listed
in Table 7, together with experimental published values [1, 9].

{continued on p. 369)

TABLE 6b

THE NON-FIXED SYMMETRY FGRCE CONSTANTS IN MDYN/A

H3Ge
or
F D3Ge F3Ge Cl3Ge BraGe I3Ge ClaSi Cl3Sn Br3Sn I3Sn
1, 1 17.05 17.70 17.45 17.40 17.30 17.35 17.45 17.35 17.25
2, 2 17.05 17.65 17.45 17.40 17.30 17.35 17.40 17.35 17.25
3, 3 3.10 2.75 2.90 2.90 2.90 2.90 2.90 2.90 2.90
4, 4 2.50 2.05 2.25 2.25 2.25 2.25 2.25 2.25 2.25
5. 5 2.53 4.65 2.76 2.55 2.10 3.30 2.40 2.25 2.0
5, 6 0.24 0.36 0.27 0.25 0.18 0.29 0.24 0.22 0.18
5, 8 0.14 0.28 0.20 0.15 0.13 0.26 0.16 0.14 0.12
6, 6 1.30 1.78 1.52 i.30 0.85 1.45 1.30 1.20 0.85
6, 8 —012 — 022 —018 —0.14 —010 —021 —0.15 —0.13 — 0.10
8, 8 0.40 0.85 0.74 0.46 0.41 0.98 0.52 0.42 0.37
8, 9 0 0 -— 013 —016 —014 —014 — 010 — 014 — 0.10
9,9 0.33 0.36 0.35 0.33 0.33 0.35 0.35 0.33 0.32
10,10 16.55 17.15 16.95 16.90 16.80 16.88 16.90 16.85 16.75
11,11 2.45 2.10 2.20 2.20 2.20 2.20 2.20 2.20 2.20
12,12 2.54 3.90 2.05 1.65 1.35 2.25 2.00 1.63 1.35
16,16 0.40 1.10 0.85 0.64 0.58 1.15 0.68 0.58 0.55
1717 0.46 0.59 0.54 0.30 0.26 0.60 0.40 0.26 0.24
17,20 0 0 -—010 —012 — 010 — 012 — 008 — 011 —:0.08

20,20 0.30 0.35 0.32 0.26 0.24 0.32 0.32 0.26 0.24
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Discussion

The most striking features of Table 6b are the variations in the stretching
force constants of the metal—metal bonds, (F¢), of the C—O bonds, (F,, and
F,.) and to alesser extent of the Co—C bonds, (¥;; and F44). The strength of
the metal—metal bond decreases:-with decreasing electron withdrawing capacity
of the MX; group except for the hydride complex. This sequence in the force
constants can only be explained by a relatively strong influence of the 7-bonding
system, as shown by the following analysis.

The diminishing m-backbonding causes a shift in the electron density from
the antibonding carbonyl orbital to the metal—metal bond, which strengthens
this bond and also the C—O bond, and weakens the Co—C bond, thus ieading to
an increase in Fy y and Fgg and a decrease in Fg . Thus the strong metal—metal
bond in the trifluorogermyl compound may be caused by lack of transferability
of electron density from the metal—metal bond due to the absence of dn—p7w
bonding between Ge and F, which itself is associated with the strong electronega-
tivity of the F atom. The weakening of the Ge—F bond with respect to the bond in
fluorogermanes {19, 23] can be explained by an extra dm—o%* bonding between
Co and Ge, as proposed by Cotton for CF;Mn(CO); [25] and by MacDiarmid
[26] (from MO calculations) for SiF;Co(CO),. The difficulty of dm—pm bonding
can also be used o0 explain the unexpectedly strong Ge—Co bond in the germy!l
complex, although the electronegativity of bromine is greater than that of hydro-
gen. The metal—metal bond strengths of the trichloro compounds show an
irregular order compared with that of Watters [6, 7]. The Si—Co bond is
weaker than might be at first expected. The small fg5_, in the series suggests a
stronger dn—pm bonding between Si and Cl, competing with the dngi—dnc,
bonding. This relatively strong dm—p7 bonding character, especially in the SiCl;
compound, has also been revealed by analysis of photoelectron spectra, dissociat-
ion energies [27], NQR studies [28, 29] and 5°Co NMR paramagnetic shift mea-
surements [30]. Table 6b also shows the sequence of F¢o_, and Fcoeq, which
is the same as for the metal—metal bond. This is consistent with the mutually
inverse trends along the series for the CO and CoC bonds observed from the
calculations, and also from the finding that fco,, > fco,,, While fcec,, < fc°ceq-

An explanation can be found in the participation of the d orbitals of cobalt
in the n-interactions. In the axial group, bonding mainly involves the d_, and d,
orbitals. In the equatorial group, four d orbitals (d.,,d,., d,, and d,2_,?) are
involved, shared however by three carbonyl groups. Therefore, the changes along
the series in the axial and in the equatorial force constants are of the same order
of magnitude.

Further evidence for the importance of w-backbonding is provided by the
larger values of the ﬁ:oceq. CoCeq AN fCo, 4. COLq force constants compared to those
of feoc, 4. coc, @04 fea, . cO,, TesPectively. The interaction constant fgo, . co,y IS
certainly not zero in this kind of five-coordinate complex, since only a strong
mixing between the two C—O stretching modes in the A, species can explain the
abnormal infrared activities and Raman depolarization ratio which we discussed
previously [1]. According to Bor [5], these vibrations have to be assigned to in-
phase and out-of-phase combinations. These features are not consistent with
changes in the g-skeleton [31]. :



From our calculated L matrix, which transforms symmetry into normal
coordinates, we deduce that there is a2 mixing of 50% between the CO stretching
modes of A; symmefry and of 10% between the Co—C stretching modes of 4;
symmetry. Feoc. . mco (Fae) is taken to be zero, since small values (up to 0.1)

ax-

did not have any influence on the calculated vibrational frequencies.

The final set force constants were not very different from our first-guess
constants. All the stretch-stretch interaction constants are consistent with con-
siderations based on Hybrid Orbital Following Force Field arguments.

Conclusion

All the results point clearly to the conclusion that change in the 7-bonding
system is by far the most important factor in the explanation of the intramole-
cular forces in these molecules. Changes in the ¢-bonding system due to differ-
ences in substituent electronegativity would result in trends in the same direction
for all the bond strengths, in conflict with the results.

This first complete normal-coordinate calculation, based upon complete
assignments of the whole series of X;MCo(CO),; molecules, shows several dis-
agreements with earlier publications in which the calculations were based upon
the Cotton—Kraihanzel method and which refer to specific parts of the spectra
only. Most of the vibrations are mixed, as is shown in calculated L-matrices.
Thus assignments in terms of internal symmetry coordinates are sometimes
rather arbitrary.
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